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Improving stock assessment of weakfish (Cynoscion regalis)  

Problems associated with the current stock assessment methods for weakfish include spatial difference 
of individual growth, stock structure, the catch rate survey spatial coverage, questionable assumptions used in 
the Adaptive VPA models, such as length-at-age keys borrowed among disparate geographic regions, 
measurement error of catch data and constant catchability. Therefore, new approaches must be developed for 
stock assessment of weakfish to overcome these problems. We will address the above issues in our proposed 3 
year work through geospatial data synthesis and the development of new approaches to assessing the weakfish 
fishery. A geospatial analysis of catch rates will help us to weight the data used in subsequent stock assessment 
models by considering their spatial coverage and the sample design. A flexible statistical catch-at-age model 
and a catch data-free population growth model will be developed to avoid the need for borrowed age-length 
keys (such as used in ADAPT-VPA analysis), and to better answer the questions of “is the weakfish stock 
overfished?” and “to what extent is overfishing occurring? ”.   

 

The project will provide Virginia and other states with a more relevant quantitative understanding of the 
current status of the weakfish stock. A successful stock assessment will help to reduce the uncertainty in current 
management efforts by the VMRC and ASMFC.  Fishermen need to know whether current regulations are improving 
the weakfish stock, and whether a long-time recovery plan is necessary. If a recovery plan is necessary a good stock 
assessment can lead the recovery effort, and provide guidance on useful conservation steps. There are no known status 
parameters (fishing mortality rate or spawning stock biomass (SSB) estimates) for current management. Without this 
knowledge, the ASMFC could be forced to curtail future fishing opportunities just as a precautionary measure.  An 
improved stock assessment can provide an estimate of fishing mortality, SSB and corresponding thresholds 
(biologically safe limits).  For recreational fisheries it is important that any policy regarding the establishment of 
possession limits be based on a scientific foundation. The new stock assessment approach to be developed in this 
study can overcome many problems associated with previous methods, which will improve the quality of the 
weakfish stock assessment.  This proposal will utilize multiple model approaches to investigate the status of the 
weakfish stock.   
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Title: Improving stock assessment of weakfish (Cynoscion regalis)  
 
Applicant:  Dr. Yan Jiao, Dr. Don Orth, Virginia Tech, and Rob O'Reilly, Virginia Marine 
Resource Commission  

 

Needs 

 
Weakfish (Cynoscion regalis) has formed the basis of one of the most socially and 

economically important fisheries on the Atlantic coast. Currently there is no estimate of fishing 
mortality or spawning stock biomass because the stock assessment done by the weakfish 
subcommittee and Technical Committee (TC) did not pass peer review (ASMFC 2006, SARC 
40). The stock assessment approaches used in the past appear inadequate to model the population 
dynamics of the weakfish and insufficient in providing the information required for proper 
fishery management (ASMFC 2006).  There is a compelling need for an improved stock 
assessment given the findings of the most recent peer review.  

A definite relationship exists between the stock status of Atlantic coast weakfish and 
Virginia weakfish, since this is a migratory, interjurisdictional species managed as a coast-wide 
unit stock.  Right now there are no solid, scientific indicators of the status of the weakfish 
stock.  There is no way of knowing whether the current relatively small recreational and 
commercial fisheries, along the Atlantic coast or in Virginia, are harming the stock.  There has 
not been a comprehensive assessment of weakfish in many years.  Any benefit gained from a 
coast-wide assessment directly benefits Virginia.  Without a comprehensive stock assessment, 
the ASMFC will not have the ability to effectively manage the states' fisheries but will be forced, 
in the face of continuing declines in landings, to further restrict fishermen (a moratorium is 
favored by 2 states, already).  Right now, the ASMFC recognizes that natural mortality (e.g. 
predation) is a factor of overall weakfish mortality, but the ASMFC will not know the extent of 
fishing mortality or magnitude of spawning stock biomass without an improved comprehensive 
stock assessment. The direction of ASMFC management, in the absence of an assessment, is 
moving towards lower harvest “caps” for the commercial fishery, and lower bag limits for the 
recreational fishery. However, this measure is ad hoc and not scientifically based.  

 
We propose to (1) conduct a detailed geospatial analysis to survey catch rates at age for 

consistent year-class signals; (2) explore applicability of a flexible statistical catch-at-age model 
to weakfish assessment; (3) develop a catch-data-free population growth model to supplement 
our understanding of the stock status.   

Issues in the current stock assessment, such as the individual growth difference and their 
geospatial pattern, and the geospatial pattern of the catch rate surveys, are the top two priorities 
of the weakfish stock assessment recognized by the weakfish stock assessment technical 
committee.  The analysis of the two issues will also help to understand the stock structure by 
analyzing the growth and morphological variation over spatial scale, which is the third research 
priority recognized by the TC.  Weakfish stock structure has been discussed regularly in the past 
decade. The TC notes that difficulty in defining stocks and implementing stock-specific 
assessments in a mixed stock fishery would be major obstacles (ASMFC 2006).  To better 
understand the stock structure and stock mixing, a stock composition analysis should further help 
to understand geospatial differences of weakfish individual growth and meristic (Fournier et al. 
1984; Millar 1986; Millar 1990). The analysis will assist in evaluating and justifying the use of 
different data sets in the subsequent stock assessment model.  Other issues such as the use of the 
ADAPT-VPA model, variation in natural mortality, the use of “borrowed” age-length key 
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information, the discrepancy between observed Young-of-Year (YOY) trends and the stock 
assessment result from the VPA model, etc., were questioned by the SARC 40 peer review, and 
were listed as the important research needs by the TC and the peer review committee.  

New approaches must be developed for stock assessment of weakfish to overcome many 
problems associated with the current methods; to improve the quality of the weakfish stock 
assessment, and to improve the understanding, utilization, and management of this important 
resource in the Atlantic (e.g. ASMFC 2006, NEFSC 2004).  We will address the above issues 
and suggestions in our proposed work through further geospatial data synthesis, and the 
development of new approaches to assessing the weakfish fishery. A detailed analysis of the 
currently available fishery-dependent and fishery-independent surveys, with specific focus on 
spatial and sample size justification, is needed to improve the current weakfish stock assessment 
(ASMFC 2006). GIS mapping is needed to synthesize the data from different surveys and 
locations. The catch rate pattern over the entire geospatial distribution of weakfish will help to 
better understand and quantify differences in data quality used in the stock assessment. The 
synthesized data can then be used to develop catch rate models.      

Some flexible statistical models for a weakfish fishery stock assessment are needed to 
avoid the borrowed age-length key in the ADAPT-VPA analysis and to better answer the 
question: “is the weakfish stock declining?” (ASMFC 2006).  Models under our consideration 
are the flexible statistical catch-at-age model, and the catch-data-free population growth model. 
The flexible statistical catch-at-age model avoids the need for a borrowed age-length key as used 
in the current ADAPT-VPA analysis; the catch-data-free population growth model detects 
population trends over time without the use of catch data (Hilborn 2002), thus avoiding the 
uncertainty in catch reports.  

The prior weakfish assessments lack a systematic framework for incorporating data from 
different sources, and lack systematic algorithms for estimating uncertainty and risk of 
overfishing. Therefore, a risk-based decision-making framework for weakfish needs to be 
developed.  The risks of overfishing, and of the stock being in overfished status, need to be 
estimated with full consideration of uncertainty.  

 

Summary of first year accomplishments 

 

In our first year of data and modeling analysis, we found that: 1) population growth rate 
varies over time with a declining trend after mid-1990s; 2) a time-varying population growth 
model works better then a constant population growth model; 3) catch rate standardization is 
needed before the abundance indices can be used in the stock assessment. We found that survey 
season (month) and location (longitude and latitude) may be particularly important factors 
influencing the catch rate.  Spatial autocorrelation is significant in some surveys, such as the 
SEAMAP trawl survey.  Without standardization to eliminate the influence of these factors, an 
abundance index using arithmetic or geometric mean catch rates can be misleading.  We 
recommend using either a Generalized Linear Model or Generalized Additive Model to 
standardize the catch rate survey data.  A working document with the results of our analysis on 
catch rate standardization of state surveys and coast-wide surveys (MRFSS, SEAMAP, and 
NMFS) using Generalized Linear Models and/or Generalized Additive Models has been 
submitted to VMRC and to ASMFC. This analysis has been under consideration for use by the 
current weakfish stock assessment subcommittee. We received $5000 from the ASMFC for this 
proposal.  

 

Summary of second year accomplishments 
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The second year (as of January 2009) continues the progress of our first year’s work, with 
the additional data sets we have since received and the continuing model analysis. We have 
found that: 1) An individual growth model of weakfish can be influenced substantially by the 
measurement error of the fish age. It is recommended to incorporate measurement error when 
developing the age-length relationship and transforming the length-frequency distribution of a 
subpopulation to an age-frequency distribution. 2) Individual fish growth rates of weakfish have 
high spatial and temporal variation, which needs to be considered in the development of age-
structured models when survey data are unavailable for some years or states, and need to be 
interpolated. 3) A flexible statistical catch-at-age model is needed for weakfish stock assessment 
rather than a classical VPA or statistical catch-at-age model, because a high percentage of the 
age-length relationships used by states are actually ‘borrowed’ from neighboring states rather 
than calculated with in-state data. Details of the work accomplished in the last one year and three 
months are given in Appendix 1.  

 

Background information 

 

Consistent landing records from the commercial weakfish fishery started in 1950, and 
records from the recreational fishery started in 1981. Landings have increased steadily since the 
early 1950s, peaked in 1981, and then declined in the mid-1990s and 2000s (ASMFC 2006).   

Weakfish is distributed mainly across the northern and western part of the Atlantic and 
can be encountered from Nova Scotia to Florida. It is a migratory population under the 
jurisdiction of Atlantic State Marine Fisheries Commission (ASMFC) management.  Weakfish 
may live as long as 17 years and are known to reach 12 lbs in body weight (Goodson 1976).  Age 
is mainly determined by otolith reading in the current stock assessment (ASMFC 2006).   

Mature (90% by age 1 and 100% by age 2) weakfish spawn in estuarine and near-coastal 
waters, from spring through early fall, with peak spawning occurring, in Virginia, in late May.  
In Virginia, young of the year remain in these areas during their first summer then move offshore 
and migrate south to overwinter, in late fall.  Adult weakfish migrate into the ocean and migrate 
north in the summer and south in the late fall.  The continental shelf from Chesapeake Bay to 
Cape Lookout, North Carolina is the main wintering grounds for weakfish. Some weakfish may 
remain in inshore water from North Carolina southward (ASMFC 2004).  

ADAPT-VPA was used in weakfish stock assessment but was criticized by the most 
recent peer review committee because of the ignorance of uncertainty in the catch data. ADAPT-
VPA requires a catch-at-age matrix, which is derived from only some states samples of the 
commercial fisheries.  Virginia has been a top provider of these biological data (length, weigh 
and sex, since 1989 and age data since 1998).  The spatial variability of weakfish individual 
growth creates the problem of using borrowed age-length keys where age-length sampling 
surveys were not conducted. Disparities in spatial coverage and the possible spatial 
autocorrelation of catch rates raised issues of data quality among the SARC 40 peer review 
committee and the TC.  The new geospatial analysis of individual growth together with the 
survey catch rates will improve understanding of the geospatial pattern and correlation of these 
variables, and provides insight on the spatial dynamics of the weakfish population.  The new 
stock assessment framework developed in this study will include a flexible stochastic age-based 
model which applies more realistic assumptions of the stock’s population dynamics, better 
incorporates the model’s statistical errors, and provides a Bayesian estimator. The flexible age-
based model can incorporate catch-at-age error, and incorporate catch-per-unit of effort (CPUE) 
indices without aging information (so we do not need to borrow the age-length key as required 
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by the ADAPT-VPA). The flexible age-based model can be further extended to spatially explicit 
models to incorporate stock structure.  Therefore, CPUE indices from different locations can be 
used with different stocks of weakfish. We also will develop a catch-data-free population growth 
model based on fishery-independent and fishery-dependent surveys. This model will be used to 
evaluate population overall growth without separating natural mortality, fishing mortality and 
intrinsic population growth rate. It will help us to understand the overall trend of the population. 
After that, a multi-species predator-prey-environmental recruitment model will be constructed. 
This model will be used to evaluate the influence from other biotic and abiotic factors beyond the 
weakfish population itself.  

Bayesian estimators have been increasingly used in assessing fisheries resources because 
of their abilities to provide a systematic approach for incorporating prior knowledge and data 
from different sources into assessments, as well as the ability to produce results that can be used 
directly for risk analyses of alternative management strategies.  Risk of overfishing (fishing 
mortality F larger than F-based biological reference point) the fishery and the stock to be 
overfished (Biomass B smaller than B- based biological reference point) will be estimated using 
a composite risk assessment approach based on the posterior distributions of the reference points 
that we will explore in this study (Jiao et al. 2005; Jiao et al. 2009). The composite risk 
assessment approach fully considers uncertainty from indicator reference values (e.g., F and B) 
and biological reference points (e.g., Fmsy , fishing mortality as the maximum sustainable yield 
(MSY) and Bmsy, biomass at MSY) when estimating risk of overfishing and risk of a fishery being 
overfished. The uncertainty of F and B, and of Fmsy and Bmsy will be given by the posterior 
distributions of these parameters in the Bayesian stock assessment model. The current control 
rule (a guideline that determines the overfishing and overfished conditions of a stock) for 
weakfish fishery status evaluation uses Ftarget (target fishing mortality level, a biological 
reference point that is lower than Fthreshold, and is used to against uncertainty of Fthreshold), Fthreshold 
(a threshold level of the fishing mortality that we try to avoid) and SSBthreshold (a threshold level 
of the spawning stock biomass (SSB) that we try to avoid).  We will examine fishery status based 
on the control rule provided in Amendment 4 to the weakfish management plan (ASMFC 2002).  
Bmsy will be estimated and the difference between SSBmsy and SSBthreshold will be compared to 
investigate the margin forfurther stock rebuilding.  Other reference points from age-structured 
models will be also evaluated. This will greatly improve our understanding, utilization, and 
management of this important resource in the western Atlantic.  

 

Objectives and goals 

 

The objectives of this study are to develop a stock assessment and risk-based decision 
making framework to assess the weakfish fishery in the Western Atlantic; to develop a set of 
stock assessment models (flexible statistical catch-at-age models; catch data-free population 
growth rate models) to better capture the population dynamics of weakfish, and to improve our 
understanding, utilization, and management of the weakfish fishery.  

More specifically, we will:  
I: collect, request and synthesize data  
(1) obtain both biological and management-related information through literature 
review, meeting with relevant scientists and agencies, and by organizing a research 
advisory workshop to which the current weakfish stock assessment subcommittee will 
be invited;  
(2) further evaluate and identify problems associated with the approaches currently 
used in the weakfish stock assessment;  
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(3) synthesize growth and catch rate data, and use GIS to map them;  
II: develop effective stock assessment models 
(4) develop models for the geospatially referenced growth and catch rate data; 
evaluate the possible ways of incorporating spatial structure into the stock assessment 
models;  
(5) develop a flexible statistical catch-at-age model to describe the population 
dynamics of the weakfish;  
(6) develop a catch-data-free population growth rate model;  
(7) develop a recruitment model after comparison among models;  

III: develop estimators for parameter estimation in the above models 
(8) develop a Bayesian approach for estimating vital fishery parameters by 
incorporating both data collected from different sources, and prior knowledge of the 
fishery derived from previous studies (ecological studies, scientists’ and fishermen’s 
experience and observations);  

IV: validate models through a simulation study 
(9) conduct an extensive simulation study to investigate model performance with 
respect to model hypotheses on data quantity and quality, especially the aging data and 
the natural mortality assumptions, and catchability assumptions;  

V: explain the population dynamics characteristics and analyze the stock status to 
(10) evaluate the population dynamics and current status of the weakfish stock; and  
(11) develop a decision-making framework for risk analyses of alternative 
management strategies, to advise government agencies and local fishing industries. 
This framework will consider uncertainty from different sources and identify an 
optimal management plan for sustainable exploitation of this important resource.   

 

Project impacts / Results or Benefit Expected 

 

We are proposing some traditional and some novel approaches to assess the weakfish 
stock because the current methodology is failing to allow effective management of the fisheries.  

Mapping and analyzing the spatial structure of the growth and the catch rate will help us 
to understand the stock structure, and explore the possibility of incorporating the stock structure 
into our assessment. Constructing a flexible catch-at-age model will avoid many shortcomings in 
the currently used weakfish age-structured model, e.g., the uncertainty of the catch will be 
incorporated, the length-at-age key will not need to be borrowed, and recruitment over time, 
fishing mortality and spawning stock biomass will be estimated as well. Developing catch-free 
models will help us to understand the population status, such as whether the population is 
decreasing or not. This will complement the result from the age-structured model. Eight stock-
recruitment models will be examined to explore the relationship between spawning stock size 
and recruitment.  The use of eight models counters the danger of assuming that any one model is 
the “true”, which ignores uncertainty in model selection and may lead to overconfidence in the 
inferences of the model (Jiao et al. 2008 and 2009). The finalized stock-recruitment relationship 
will help us to understand productivity changes over time that may be caused by climate/ocean 
oscillation or food chain dynamics. These questions will be further investigated through the stock 
recruitment models.  The stock recruitment relationship is crucial in estimating biological 
reference points.  For example, if M is changing following high-low regimes, the productivity 
should follow high-low regimes also, and these changes should be incorporated in the F 
estimation and the F-based biological reference point estimation.  
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The project will enable us to construct an operational stock assessment model for weakfish, 
better understand the dynamics of weakfish in the western Atlantic, and greatly improve the 
management of Atlantic weakfish. The new stock assessment approach to be developed in this 
study can overcome many problems associated with traditional methods.  This will benefit 
fisheries scientists, managers, and stakeholders and greatly improve the understanding, 
utilization, and management of this important resource in the western Atlantic.   

The PI will also present this project as a case study to Ph.D. students taking the graduate 
course “Fisheries Population Dynamics and Modeling”, which the PI will teach regularly. This 
will teach students updated quantitative approaches in assessing fisheries resources in the context 
of a current and important U.S. Atlantic fishery, and will help students better understand how a 
stock assessment is done to address management issues in the real world.   

The results will be communicated to the NMFS, ASMFC, and state management agencies 
through seminars, workshops and meetings. A webpage will be developed to update the progress 
of the project and receive feedback from stakeholders and interested parties.  Information and 
methods developed in the study will be downloadable for anyone who is interested in this study.  
Upon completion of this project, the results will be presented to the ASMFC and NMFS for their 
consideration for implementing the proposed methods in the fisheries management. Presentations 
will be given at national and international conferences (e.g., American Fishery Society annual 
meetings), and manuscripts will be submitted to peer-reviewed journals in fisheries.  

 

Research plan and methodology 

 

Spatial structure analysis of weakfish growth 

GIS will be used to map the survey location, sample size, and age-specific growth 
differences. Spatial differences of weakfish individual growth (both age-specific differences and 
growth curve differences) will be analyzed through a likelihood ratio test (Cerrato 1990).  A 
simplified likelihood ratio formula may be used, e.g.: 

(1)  2 ( ) ( )o

a

sum of square residuals H
Ln Likelihood ratio nLn

sum of square residuals H
− = , 

where n is the total number of fish, Ho is the null hypothesis (for example: fish grow at the same 
rate everywhere), and Ha is the alternative hypothesis (for example: weakfish grow faster further 

south than north).  To reject Ho, 2 ( )Ln Likelihood ratio−  should be larger than 2

kχ , where k is 

the number of degrees of freedom and equals the extra number of parameters estimated under Ha 
compared with Ho.   

Individual growth for a given area (for example, a state’s waters) can be simulated based 
on available age-length data. For areas that do not have individual growth data available, a 
hierarchical individual growth model (Gelman et al. 2004) will be developed, which can be 
written as: 
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where L∞ , k , and 0t  are parameters in the von Bertalanffy growth model, and subscript s  

represents specific spatial parameters. The hierarchical population structure is developed in this 



 8 

model through a multi-level prior (Wikle 2003; Gelman et al. 2004) of spatial-specific 
parameters in the individual growth model.  
 

Spatial structure analysis of the weakfish CPUE 

GIS will be used to map the survey location, sample size and the CPUE difference. This 
will enhance our understanding of the spatial difference of the weakfish catch rate and their 
sample size and spatial coverage. The Generalized Linear type of models (including Generalized 
Linear Model (GLM), Generalized Additive Models (GAM) and Generalized Linear Mixed 
Model (GLMM)) (Bishop et al. 2004) will be used to analyze how spatial distributions of catches 
(and potentially spatial autocorrelation of catches), as well as environmental factors, influence 
CPUE. Other modeling approaches that are currently used by management agencies will be 
examined for comparison with the performance of the GLMs.  

From this analysis, we will obtain a conclusion on CPUE standardization and the 
weighting of different CPUEs based on their sample size and spatial coverage.  If strong spatial 
correlation is detected a spatial-structured CPUE model can be developed and used in the 
subsequent population dynamics models.  

 

Development of catch-data-free model 

A set of catch-data-free models will be constructed to represent the dynamics of the 
weakfish stock. The models will capture the overall trend of the population changes over time 
instead of the “true” population size. This study will help to answer the question of “is the 
population declining?”.  Models such as random-walk and the Kalman-filter autoregressive 
models have been used to analyze the temporal trends of population or productivity (Peterman et 
al. 2000, 2003).  

The first model will be: 

(3)                  
1

1

,

( ) ( ) ( )
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t

t

T

t T t

t T t t

I I e or

Ln I T Ln Ln I

ελ

λ ε
+

+

=

= + +
 

where λ  is the population growth rate; tI  is the density of the population (CPUE) at the survey 

year t; tT  is the time interval between year t and t+ tT ; and error 1ε  is independent and normally 

distributed with mean 0 and variance 
1

2

εσ .  This model assumes constant population growth rate 

over time and locations, and density dependency is not considered. This is an exponential growth 
model (EG model).  

The second model will be:  

(4)                     
2

( ) ( ) ( )
t

t

t T t t t

t T t

Ln I T Ln Ln I u

u u

λ

φ ε
+

+

= + +
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In this model, residual error tu  is modeled as a first-order autoregressive (AR(1)) process. φ  is 
the autocorrelation coefficient, and error 2ε  is independent and normally distributed with mean 0 

and variance 
2

2

εσ .  This is a residual autoregressive model.  

The third model will be: 

(5)                         
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where population growth rate tλ  is modeled as a random walk process; and errors 3ε  and 4ε  are 

independent and normally distributed with mean 0 and variances 
3

2

εσ  and 
4

2

εσ . This is a random 

walk model.  
The fourth model will be: 

(6)                      
5

6

( ) ( ) ( )
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t T t
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+
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where population growth rate tλ  is modeled as a first-order autoregressive process, and ϕ  is the 
autocorrelation coefficient.  This is a Kalman-Filter autoregressive model.  

The fifth model will be:  

(7)                         

7( ) ( ) ( )
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where error 7ε  is independent and normally distributed with mean 0 and variance 7

2

εσ .  tλ  is 

modeled  to follow a hierarchical distribution, i.e., a , the mean of λ   follows a uniform 
distribution between c and d, and ( , )N a b is truncated to ensure that λ  has positive values. This 
is a Bayesian hierarchical exponential growth model.  

The sixth model will be:  

(8)                         
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where error 8ε  and 9ε are independent and normally distributed with mean 0 and variance 8

2

εσ  

and 
9

2

εσ .  tI  is modeled as a measurement error model (Jiao et al. 2006).  

 
All the CPUE data will be analyzed using the models described above. These models will 

be compared based on the Deviance Information Criteria (DIC).  If the DICs differ greatly, one 
of the models with the lowest DIC will be used for population projection; if the DICs are close, a 
model averaging approach may be used to summarize the population trends using all the models 
and incorporating model selection uncertainty (Jiao et al. 2008 and 2009).  

 

Development of a flexible statistical catch-at-age stock assessment model 

A flexible stochastic age-based model will be constructed to represent the dynamics of 
the weakfish stock. The model will consist of five sub-models including: (1) a stock-recruitment 
model (not built in the general mode here because of the dramatic changes of weakfish 
recruitment and the huge impact of model assumptions); (2) a number-at-age model; (3) a series 
of observational models that describes the relationship between stock abundance and the 
abundance indices observed in the fishery and/or fisheries-independent surveys (age-structured 
or not, “borrowed” age-length data will not be used); (4) a series of observational models that 
describe the relationship between observed and predicted size composition data collected in the 
fishery and/or fisheries-independent surveys; and (5) a series of observational models that 
describe the relationship between observed and predicted catch. A model stock will be generated 
and driven by observed catches and fine-tuned with the data observed from the fishery using a 
Bayesian estimator described in the statistical estimation section.  

(9)   ˆ ( )R f spawner=      R̂  is the predicted recruitment 
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(10)   , 1, 1 1, 1 1, 1
ˆ ( , , )year age year age year age year ageN f N M F− − − − − −=    

,
ˆ

year ageN  is the predicted population size at a given year and age; M and F are natural mortality 

and fishing mortality. M is assumed to be constant among ages and years.  

(11)   , ,
ˆ ( )year age year ageI f N=     

if age composition information is available for the CPUE data; or ˆ ( )year yearI f N=  if age 

composition information is not available for the CPUE data. Î  is the predicted CPUE. In this 
equation, a constant catchability model and a time-varying catchability model will both be used. 
We will justify which one works better for the weakfish fishery based on the goodness-of-fit.  

(12)   *

, , , ,
ˆ ( , , )year age year age yeear age yea agep f N F M=    

*F  is the fishing mortality from the survey; ,
ˆ

year agep  is the predicted proportion at a given age 

and year. If the survey is from the fishery, then *F F=  from the fishery; if not *F F≠ .   

(13)   , , ,( , , )predicted year age year age year ageCatch f F M N=   

As in equation (3), catch can be age-structured if age-structured information is available; it can 
be non age-structured if no age information available.  

The model described above can be extended as a spatial catch-at-age model through 
hierarchical structuring, as we proposed in the section on spatial structure analysis of weakfish 
growth.  Equations 10 to 13 can then be written as:  

(14)   

, , , 1, 1 , 1, 1 , 1, 1

, , , ,

*

, , , , , , , ,

, , , , , ,

ˆ ( , , )

ˆ ( )

ˆ ( , , )

( , , )

s year age s year age s year age s year age

s year age s year age

s year age s year age s year age s year age

s predicted s year age s year age s year age

N f N M F

I f N

p f N F M

Catch f F M N

− − − − − −=

=

=

=

, 

where subscript s represents specific spatial parameters.  The hierarchical population 
structure will be developed through multi-level priors of spatial-specific parameters in the spatial 
catch-at-age model. A modeled stock will be generated and driven by observed catches and fine-
tuned with the data observed from the fishery using a Bayesian estimator described in the 
statistical estimation section.  

The dynamics of the weakfish stock will be described by the stock-recruitment model, 
together with a numbers-at-age model which can be derived from two commonly used models in 
fisheries, the catch equation and the exponential survival equation (Ricker 1975, Hilborn and 
Walters 1992). Predicted numbers-at-age, catch-at-age, and stock abundance will be related to 
observed catch and CPUE data in the fishery and to observed numbers-at-age and abundance 
index observed in the fishery-independent survey by formulating an appropriate objective 
function, which will be decided in the section of the statistical estimator. By optimizing the 
objective function, we can estimate the model parameters, and thus the dynamics of the weakfish 
stock. 
 

Development of the stock recruitment model 

The stock-recruitment relationship is always one of the most difficult and controversial 
relationships to be identified or assumed in stock assessment. It will be done separately 
following the flexible age-structured stock assessment model. Eight mathematical models will be 
developed to simulate the recruitment dynamics: a Ricker model, a Beverton-Holt model,  a 
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hierarchical Ricker model, an auto-regressive residual model, a random walk Kalman filter 
model, an auto-regressive Kalman filter model, a measurement error Ricker model, and a 
predator-prey-environmental recruitment model (Quinn and Deriso 1999; Peterman et al. 2003).  
Other approaches that may be identified in course of the study will also be considered. These 
models will be compared based on the Deviance Information Criteria (DIC).  If the DICs differ 
greatly, one of the models with the lowest DIC will be used for population projection; if the 
DICs are close, a model averaging approach may be used (Jiao et al. 2008 and 2009).  

Recruitment modeling responses to environmental factors such as water temperature; the 
North Atlantic Oscillation, and predator-prey relationships (striped bass, menhaden, etc) were 
included in the previous proposal of this project. Meanwhile, the 2006 stock assessment 
committee had developed a predator-prey model. We therefore added the predator-prey-
environmental recruitment model (listed above) to investigate possible factors other than 
spawner stock that influence the recruitment dynamics of weakfish.  This is one of the primary 
recruitment models to be included in the comparison. The environment and biotic factors other 
than predation may or may not contribute significantly to recruitment variation. A final selection 
of the best recruitment model will be decided after comparing all models.  

 

Statistical estimator 

We will mainly use a Bayesian approach to fit the model to data collected from different 
sources. State-space time-series models (such as equation 2, which comprises process error, and 
equation 3, which comprises time-varying catchability) explicitly require a Bayesian estimator 
(De Valpine and Hasting 2002).  We will also use the frequentist method when only observation 
errors are considered.  The principal difference between Bayesian approaches and frequentist 
methods is in the interpretation of uncertainty associated with modeling (Berger 1985). 
Bayesians believe that model parameters are random and uncertainties in the parameter 
estimation reflect the likelihood of a hypothesis that a parameter has a certain value (Hilborn et 
al. 1993). This enables the results of Bayesian stock assessment, i.e., the posterior distributions 
of model parameters, to be used directly in risk analyses of alternative management strategies. 
The Bayesian approach has been increasingly used in stock assessment because of this advantage 
(McAllister and Kirkwood 1998, Chen et al. 2004).   

The Bayesian approach uses a probability rule (Bayes’ theorem) to calculate a “posterior” 
distribution of model parameters from the combination of observed data and a “prior” 
distribution, i.e., a summary of the prior knowledge about the parameters (McAllister and 
Kirkwood 1998, Gelman et al 2004). Two types of prior distribution are commonly used in a 
Bayesian stock assessment: non-informative and informative priors (Scheweder 1998, Gelman et 
al 2004). Whether a parameter will have a non-informative or informative prior will be determined 
by the reliability and details of prior knowledge, which may come from various sources including 
fishermen’s experience, previous studies of the fishery, and knowledge of similar species and 
fisheries. If a non-informative prior must be used it is usually applied as a uniform distribution, the 
lower and upper boundaries of which are based on biological theory or knowledge of fish stocks 
(Hilborn et al. 1993).  

Normal distribution function (bell curve)  

(15)   
2

2

1 [ ( , )]
( , | ) exp( )

22

Y f X
P Y X

β
β σ

σπσ
−

= −,   

will be used for log-transformed catch, CPUE data and the predicted stock abundance. If data 
prove to be sensitive to the normal distribution we will switch to the t distribution, which is 
similarly shaped but more robust to atypical errors (Hilborn and Walters 1992, Quinn and Deriso 
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1999, Chen et al. 2000For numbers-at-age/length and catch-at-age/length data, the above 
distribution is inappropriate. A modified multinomial function (Fournier et al. 1990), weighted by 

the effective sample size, tτ (i.e., independent samples actually measured for estimating age/length 
compositions), will be used to describe the differences between observed and predicted numbers-
at-age/length and catch-at-age/length  

(16)  

Pr 2

, ,

, ,, ,

( )1
( | ) exp 0.01

2[ (1 ) 0.1/ ]2 (1 ) 0.1/

Obs ed

t a t a t

Obs ObsObs Obs
a t a ta t a t

P P
P X

P P nP P n

τ
β

π

 − −
= + 

− + − +  
 , 

where X  is the catch-at-length or catch-at-age composition data from the fishery or from a 

fishery-independent survey, and n  is the number of age/length classes. The term 0.01 increases the 
size of the distribution’s tails, and reduces the influence of outliers. The term 0.1/n prevents the 
variance from tending to zero as the observed value tends to zero, reducing the influence of 
observed outliers with small probability (Fournier et al. 1990).  

The normal distribution and/or t distribution functions will also be used for log-
transformed CPUE data in the catch-data-free population growth models and for log-transformed 
recruit data in the recruitment models.  

 

Data required in the assessment and their availability 

Information relating to weakfish and its fishery has been collected by the NEFSC, ASMFC, 
local agencies and research institutes of the Atlantic coastal states (Rhode Island, Connecticut, 
New York, New Jersey, Delaware, Maryland, Virginia and North Carolina). The information 
required by the stock assessment model described above comes from two types of sources: fishery-
dependent and fishery-independent.  The above sources of information have been discussed in 
ASMFC (2006) and NEFSC (2003) stock assessment documents and are available to this project. 
Original data will be requested by Rob O'Reilly, who works at the Virginia Marine Resources 
Commission and has been involved in weakfish stock assessment for many years.  

Other information required for the proposed stock assessment framework includes data 
describing the relationship between length and maturation, age/length-specific fishing vulnerability, 
length-weight relationship, age/length-specific fecundity, and maximum and minimum legal sizes, 
and release mortality. These data have been collected by ASMFC, NMFS, state agencies and 
academic researchers, and will be available to this project.  

 

Harvest control rule and fishery status evaluation 

Amendment 4 to the management plan for weakfish uses an overfishing definition with a 

fishing mortality target of target 30% 0.31F F= = , a fishing mortality threshold of 

20% 0.5thresholdF F= = , and a spawning stock biomass threshold of 20% 31.8thresholdSSB SSB= =  

million pounds. Thus, an F  greater than 0.5 means overfishing is ongoing and a SSB less than 
31.8 million pounds means the stock has been overfished (Figure 1).   

The current stock status evaluation approach did not consider the uncertainty involved in 

these indicator reference values (e.g., F, B) and biological reference values (e.g., msyF , SSB1995). 

Our proposed study will fulfill this requirement. Stock status will also be evaluated in terms of a 
risk assessment in this study. Risk in statistics is defined as the probability that the observed 
value will be larger or smaller than a given reference value. In this study, risk is determined to be 
the probability of fishing mortality ( F ) in a given year (t) being larger than an F based reference 

point, such as thresholdF . Risk is ( )thresholdP F F>  when thresholdF  is used as a reference point; 
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( )thresholdP SSB SSB<  when thresholdSSB  (spawner population abundance of a given year) is used as 

a reference value. A previously described estimation algorithm (Jiao et al. 2005) will be used to 
calculate the composite risk in the proposed study. This method will enable uncertainty to be 
fully considered in decision-making process.  

Other F and B based reference points will be considered to analyze the fishery status in 

terms of overfishing (F-based) and overfished (B-based), such as  msyF , maxF  and 0.1F , F%; and 

msySSB . Threshold values for reference points will be evaluated to further improve current status 

assessments of the weakfish fishery.  

When estimating msyF  based on Shepherd (1982), the age-structured model result will be 

used to develop a stock-recruitment relationship. To develop an age-structured model individual 
growth for each area can be simulated based on the data estimates; however for areas without 
individual growth data available, a hierarchical individual growth model will be developed.  If 
the hierarchical structured model is selected as the operational model for further stock 
assessment then in parallel, the hierarchical individual growth model should be used for the 
whole population.   

New reference points (beyond those of Amendment 4) are necessary and are important 
for helping to improve our understanding of the fishery’s status.  Biological reference point 
estimation will be linked to the regimes of natural mortality variation and the productivity 
changes over time.  Management will be improved by linking the management process with 
natural variations of the population, such as those caused by climate / ocean oscillations or food 
chain dynamics.  

 

Simulation and sensitivity study  

This study involves using the proposed model to fit different sets of weakfish observation 
data and model parameters that characterize the weakfish population dynamics. We will have 
specific focus on the influence of the aging error, natural mortality assumption, and catchability 
assumption (ASMFC 2006).  We will investigate the influence of Marine Recreational Fisheries 
Statistics Survey (MRFSS) data since they, which have previously been treated as very 
uninformative but was are regarded as one of the better data sources because of its wider spatial 
coverage in the weakfish stock assessment (NRC 2006, ASMFC 2006). The impacts of using 
either random error assumptions or autocorrelated error assumptions on the formulation of 
likelihood functions and subsequent parameter estimation will be compared.  We will evaluate the 
management consequences of the above factors to inform fisheries managers about the relative 
risks associated with any choice. 

Uncertainty caused by aging error will be analyzed through a simulation study.  
Simulated “true” length-age data based on the statistical catch-at-age model will be augmented 
with different levels of random error.  We will then estimate stock parameters and population 
size from these simulated data with error, and investigate the influence of aging error on the 
weakfish stock by evaluating the difference between parameters calculated with and without 
aging error. The estimated probabilities of aging bias will be linked to the converted catches-at-
age, and the corresponding bias in the result will be analyzed as a sensitivity factor. With this 
analysis, we will be able to determine how sensitive the stock assessment result is to bias caused 
by the aging method.  At the same time, we will investigate the performance of using non-age-
structured catches, CPUEs, and survey indices data when deriving the estimator in the flexible 
statistical catch-at-age model.  The aim of this comparison is to explore whether using non-age 
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structured catch and CPUE data can decrease the impact of aging error when a statistical catch-
at-age model is used.   

The modelling and statistical approaches may be modified based on the simulation and 
sensitivity analysis results to ensure that the models effectively capture the weakfish stock 
dynamics and are not too sensitive to errors in the data and or assumptions of hypotheses. Possible 
modifications may include considering both data quality (variance from surveys and fishermen’s 
and scientists’ experience) and model fit if one data set shows a contrary trend or causes divergent 
results (Polacheck et al. 1997, Richards 1991). Robustness of the reference points and robustness 
of the estimated risks when different reference points are used will both be investigated.  The 
resulting assessment model and statistical approach fine-tuned in this study will be presented and 
recommended to the weakfish stock assessment panel. 

 
We expect to complete the work in 3 years (see the timeline in Table 1).  
 

Location of the project 

 

The project will be carried out in the Department of Fisheries and Wildlife Sciences, 
College of Natural Resources, Virginia Polytechnic Institute and State University.   

 

Monitoring of project performance   

 

Dr. Yan Jiao will oversee the completion of this project and will supervise the 
postdoctoral fellow and the Ph.D. student, as well as all program coding and modeling analyses. 
Dr. Jiao will monitor the progress of the project and will oversee the preparation of the 
semiannual project status reports and the final project report. Dr. Donald Orth and Rob O’Reilly 
will work with the research team on a regular basis, both reviewing ongoing work and discussing 
future steps.  All members of this team will be involved in the planning of model approaches, 
data analyses, the interpretation of results, and the preparation and editing of manuscripts and the 
final report. 

 
Please see the timetable (Table 1) for detailed information on duty and timelines.  
 

Participation by persons or groups other than the applicant 

 

We will collaborate with the Virginia Marine Resources Commission to discuss our 
project progress and results.  Scientists who have previously worked on weakfish at the state 
agencies have been contacted for comments regarding this proposal and will be in regular 
communication to review the project’s progress.  Weakfish stock assessment subcommittee 
members, e.g., Dr. Jeff Brust (Chair of the stock assessment subcommittee), Dr. Desmond Kahn 
(DE Dept. Natural Resources), Jim Uphoff (MD Dept. Natural Resources), Dr. Victor Crecco (CT 
Dept. Environmental Protection), will be invited to attend a weakfish stock assessment workshop in 
Blacksburg, VA.  We expect 6 of them can attend it each year.  Their experience and knowledge 
about Atlantic fisheries, the fishing industry, and the data will help ensure the success and 
quality of the project.   Dr. Jiao, the project leader, has attended the weakfish subcommittee 
meeting on January 7-8, 2008, and the weakfish data workshop organized by ASMFC in July 
2008.  This project will also involve Dr. Jim Berkson, the leader of the NMFS Recruiting 
Training and Research Unit at Virginia Tech, for student training purposes.   
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Table 1. Timetable (01/01/2008 – 12/31/2010) 

Project component  Responsible 

persons 

3 6 9 12 3 6 9 12 3 6 9 12 

1) Literature search; recruit a postdoc Jiao, Orth, O’Reilly b            

2) Request the growth survey and catch rate data; organize a weakfish 

research advising workshop to incorporate the weakfish stock 

assessment subcommittee’s input 

O’Reilly, Orth and 

Jiao 

b    b    b    

3) Synthesize the growth survey and catch rate data using GIS Ph.D.  b b b         

4) Quantitative analysis of the spatial structure of the growth  Ph.D.     b b b b b     

5) Develop database and submodels that describe different fishery 

processes     

all members  b           

6) Develop statistical estimators for the catch-data free model Jiao, Ph.D.     b b   b b   

7) Develop model averaging approach for the catch-data free model Jiao, Ph.D.           b b 

8) Develop estimators for the flexible statistical catch-at-age model Jiao, postdoc   b b         

9) Develop and debug computer program codes for the models postdoc, Ph.D.    b b b b b   b   

10) Estimate the dynamics of the weakfish fishery using the data and 

constructed model, estimator 

postdoc, Jiao    b b b       

11) Risk assessment to evaluate weakfish fishery status postdoc, Jiao      b b      

12) Sensitivity analysis to aging data and test model tuning method 

versus sensitivity on data sources and other important assumptions 

postdoc, Jiao        b b    

13) test natural mortality assumption  postdoc, Jiao         b    

14) test catchability assumption  postdoc, Jiao      b b  b    

15) model averaging different catchability models postdoc, Jiao       b b b    

16) Estimate the dynamics of the weakfish fishery using the further 

tuned model 

postdoc, Jiao          b b  

17) Evaluate and conclude the project all members           b b 
              

Project Disseminations              

1) Set up a website for the project Postdoc, Jiao b            

2) Update the project website Postdoc, Jiao  b b b b b b b b b b b 

3) Present results to Virginia MRC and ASMFC if possible all members       b      

4) Present results at national and international conferences all members       b   b   

5) Submit papers to peer-reviewed journals  all members       b     b 
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Figure 1: Fishery status shown as overfishing risk and overfished risk using the weakfish 

Amendment 4 (2002) control rule.   
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BUDGET NARRATIVE (YEAR 1)—Jiao, Orth and O’Reilly 
(Budget is based on a start date of 1 Jan. 2008) 

 

1) Personnel:  

  Salaries: $ 45,089 
 Note: Virginia Tech accounting for salaried personnel on the basis of percentage-of-effort, 
not on a per-hour basis; this method of accounting is in according with OMB Circular A-21, Cost 
Principle for Education Institutions. Any hours reflected in the proposal for these personnel have 
been shown for the convenience of the Sponsor. These hourly rates are not auditable either as 
proposed or as incurred hours. The conversion has been made by applying a standard 2,080 hour 
year to the cost estimated by using percentage-of-effort to determine the total salary cost.  
 
  Dr. Jiao  10% year time salary;  Dr. Orth  5% year time salary; and Ph.D. 66% (2 
semesters research associate support) and Postdoc 50% year salary. 
 

Dr. Jiao will oversee the project progress, management the budget; both Dr. Jiao and Dr. 
Orth will help the postdoctoral fellow and the Ph.D. student to construct the model.   
 
  Fringe Benefits (Includes FICA, workers compensation, unemployment compensation, 
medical insurance, group life insurance, employee retirement compensation, faculty and staff 
fee waivers, and educational leave): $12,347    

  Postdoc Research Associate:  fringe rate = 36.5% 
  Tenure faculty: fringe rate = 32% 
  Graduate student: fringe rate = 11% 

 

2) Travel:  $7,000 
 VT and VMRC around trip 1 persons 3 times =$2,000 
 Weakfish workshop, 6 people from the weakfish subcommittee travel to Blacksburg, =$5,000 

 

3) Equipment and Furniture:  $2,000  (cost share from Virginia Tech) 
 1 new computer  $2,000 

4) Material and Supplies: $2,200 (cost share from Virginia Tech) 
1 individual license of MATLAB ($1,500)  
1 individual license of ADMB ($700) 

5) Other Costs:  $5,318 (student tuition) 

   

Total Direct Costs = $69,755 (VMRC) + $4,200 (Virginia Tech cost share) 

 

6) Indirect Costs: $17,439 (VMRC) + $19,709 + $2,422 (Virginia Tech cost share) 

 VMRC Indirect Rate @ 25%    
 Virginia Tech Indirect Rate @ 56.8% (before July 2008) and 58.5% (after July 2008) 
              

Total Costs:  $87,194 (VMRC) + $26,330 (Virginia Tech cost share) 
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BUDGET NARRATIVE (YEAR 2)—Jiao, Orth and O’Reilly 
(From Jan 1, 2009 to December 31, 2009) 

 

1) Personnel:  

  Salaries: $ 68,536 
  Dr. Jiao  10% year time salary; Dr. Orth  2% year time salary; and Ph.D. 100% and 
Postdoc 100% year salary. 

Dr. Jiao will oversee the project progress, management the budget; both Dr. Jiao and Dr. 
Orth will help the postdoctoral fellow and the Ph.D. student to construct the model.      
 
  Fringe Benefits: $19,113   
  Postdoc Research Associate:  fringe rate = 35%  
  Tenure faculty: fringe rate = 35.25% 
  Graduate student: fringe rate = 6.75% 
 

2) Travel:  $8,500 
 VT – VMRC -ASMFC around trip 2 persons 2 times =$2,000 
AFS annual conference meeting 2 person 1 trip = $1,500 

 Weakfish workshop, 6 people from the weakfish subcommittee travel to Blacksburg, =$5,000 
 

3) Equipment and Furniture:  $0  
4) Material and Supplies: $550 (Virginia Tech cost share) 

Software maintenance 

5) Other Costs:  $8,728 (student tuition) 

   

Total Direct Costs = $104,701 (VMRC) + $550 (Virginia Tech cost share) 

 

6) Indirect Costs: $26,175 (VMRC) + $29,969 + $322(Virginia Tech cost share) 

 VMRC Indirect Rate @ 25%    
      Virginia Tech Indirect Rate @ 58.5% 
       

Total Costs:  $130,876 (VMRC) + $30,841 (Virginia Tech cost share) 
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BUDGET NARRATIVE (YEAR 3)—Jiao, Orth and O’Reilly 
(From Jan 1, 2010 to December 31, 2010) 

 

1) Personnel:  

  Salaries: $ 56,626 
  Dr. Jiao  10% year time salary;  Dr. Orth  2% year time salary; and Ph.D. 100% and 
Postdoc 60% year salary. 

Dr. Jiao will oversee the project progress, management the budget; both Dr. Jiao and Dr. 
Orth will help the postdoctoral fellow and the Ph.D. student to construct the model.    
 
  Fringe Benefits:   $14,398  
  Postdoc Research Associate:  fringe rate = 35%  
  Tenure faculty: fringe rate = 35.25% 
  Graduate student: fringe rate = 6.75% 
 

2) Travel:  $8,500 
 VT – VMRC -ASMFC around trip 2 persons 2 times =$2,000 
AFS annual conference meeting 2 person 1 trip = $1,500 

 Weakfish workshop, 6 people from the weakfish subcommittee travel to Blacksburg, =$5,000 
 

3) Equipment and Furniture:  $0  
4) Material and Supplies: $580 (Virginia Tech cost share) 

Software maintenance 

5) Other Costs:  $9,561 (student tuition fee) 

   

Total Direct Costs = $89,085 (VMRC) + $580 (Virginia Tech cost share) 

 

6) Indirect Costs: $22,271 (VMRC) + $24,250 +$339(Virginia Tech cost share) 

  VMRC Indirect Rate @ 25%    
            Virginia Tech Indirect Rate @ 58.5%    

Total Costs:  $111,356 (VMRC) + $25,170 (Virginia Tech cost share) 
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Appendix 1: Summary of the first 15 months accomplishments (1/1/2008 ~ 

3/30/2009) 
 
The overall scope of first and second year (3 months) accomplishments is summarized on page 3. 
The following are descriptions of specific tasks completed and undertaken. 
 

Data sets received:  
A “weakfish data CD” has been received that provides historical data used for previous stock 
assessments.  This data CD comprises three parts: biological survey (fishery-independent) data, 
harvest (commercial) data, and biological indices.   
 
Catch rate survey data have been received with help of the ASFMC from the state agencies in RI, 
NJ, DE (adult and juvenile surveys), MD (adult and juvenile surveys), NC (adult and juvenile 
surveys), CT, NY, and VA; and from the coast-wide SEAMAP, NMFS, and MRFSS surveys.  
 
The PI, Dr. Yan Jiao participated in the two weakfish data workshops in 2008, and attended the 
weakfish Stock Assessment Subcommittee (SAS) meeting on April 1, 2009. At these meetings 
the catch and bycatch data were updated and made available to the weakfish stock assessment 
improvement project.  
 
 

Progress and project tasks have been completed for this period   

In the last 15 months, we have attended two weakfish stock assessment subcommittee meetings 
(January 7-8, 2008, October 28, 2008, and April 1, 2009), and a weakfish data workshop (July 
14-17, 2008). Dr. Jiao, the Principal Investigator, has been an invited member of the weakfish 
SAS since fall of 2008, and will attend the next stock assessment meeting in June 2009. At these 
meetings Dr. Jiao gave presentations on our project and collaborated with the subcommittee to 
share data and research objectives for improving the weakfish stock assessment.  Some of our 
project results are being used for the next weakfish stock assessment led by the Atlantic States 
Marine Fisheries Commission.   
 
The following project tasks on data request, and synthesis have been completed: (1), Multi-
year data on commercial and recreational catches and discards, as well as survey indices of 
relative abundance and sex-age-length-weight relationships, have been received by the principal 
investigator for all Atlantic coast states which harvest weakfish, and they have been updated 
twice based on the progress of the current SAS stock assessment data workshops. (2), A post-
doctoral researcher, Andreas Winter, has been hired at Virginia Tech to focus on spatial analyses 
of the weakfish catch and survey data. (3), Undergraduate students, Rich Pendleton and Jon Yu 
have been contracted through the department work-study program at Virginia Tech to prepare 
initial summaries of the data sources, and compare differences in individual growth of weakfish 
reported from different states. (4), Two graduate students have been trained to participate in 
components of the project that relate to their research backgrounds. Hao Yu participated in the 
Catch Rate Standardization research together with Andreas Winter. Qing He participated in the 
application of AdaBoost in analyzing high % zero catch issues using SEAMAP survey data as an 
example.    
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The following project tasks on modeling analyses are accomplished or in progress:  
(1), We have completed the random-walk population growth state-space surplus production 
model (RWSSSPM). 

Currently used population dynamics models usually assume that population growth rate 
is constant. But in reality, it varies because of climate changes and/or fluctuations in predation 
intensity.  The RWSSSPM model allows us to evaluate a population growth rate that is changing 
over time, which is an important consideration for weakfish.  Our modeling results showed that 
the RWSSSPM model fit the data better than a commonly used surplus production model with a 
constant population growth (low DIC value), with population growth rate of weakfish varying 
over time and the recent population growth rate decreasing (Figure A1).  
   
(2), We have completed catch rate modeling analyses for the 3 coast-wide and 11 state-
agency survey databases received.  The catch rates are modeled with generalized linear models 
(GLM) and generalized additive models (GAM) using a delta-lognormal approach. The delta-
lognormal approach is a two-step method that separately models the presence vs. absence of 
weakfish in all catch samples, and the weakfish catch numbers in those samples that caught at 
least one. This method is particularly useful for data that have many ‘zero’ catches, which are 
difficult to fit to a single distribution. 

The analyses are motivated by the need to standardize catch rates. Currently, the 
geometric mean of a survey catch rate is used as the Catch-per-Unit Effort (CPUE) or abundance 
index for weakfish stock assessment. However, the catch rate of weakfish in a trawl survey is 
potentially influenced by many factors. For example, in the New Jersey survey dataset we found 
that besides year, which is the variable of interest, month, latitude, longitude, tow depth and tow 
duration were statistically significant factors influencing the catch rate of weakfish. Before using 
the survey dataset for stock assessment as an indicator of yearly population abundance, the 
influence of these other factors therefore needs to be excluded.  Figure A2 shows that the New 
Jersey weakfish catch rate is highly correlated with the month. If a survey in a given year only 
happens in the fall season, while in other years the survey is year-round, then the year with the 
survey only in the fall will be highly biased.  Figure A2 also shows that catch rate is correlated 
with longitude and latitude.  If a survey in a given year occurs only in the southwest sector of 
New Jersey waters, while in the other years the survey is distributed throughout the state waters, 
then the year with the survey only in the southwest would again be highly biased. Standardizing 
catch rates by including factors such as month and longitude / latitude in a GLM or GAM, then 
subtracting their influence, allows for these biases to be removed and the yearly trend alone to be 
estimated.  

Longitude and latitude are particularly important factors because of the effect of spatial 
autocorrelation. Catch samples taken in locations that are close together are likely to have similar 
numbers of fish, i.e., they are autocorrelated. However, statistical catch models are based on the 
assumption that data from all locations are independent. Violating this assumption may result in 
bias when catches from nearby locations are included in the database, which are not independent.  
Table A1 shows that in many years of the SEAMAP trawl survey catch numbers were ‘clustered’, 
i.e., they had significant spatial autocorrelation. Results were similar for the other surveys. The 
GLM and GAM catch rate standardizations therefore included longitude and latitude for every 
survey in which they were recorded. Other variables commonly recorded in the surveys were 
sampling depth, tow or set duration, temperature, salinity, and dissolved oxygen. 
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GLM and GAM catch rate standardizations were compared for each applicable1 survey 
using the Akaike Information Criterion (AIC). GAM, which allows for non-linear fitting, was 
found to have a lower AIC than GLM in nearly every case (Table A2) and was therefore selected 
as the preferential model. Further analyses in progress will compare the R2 values and standard 
errors of the models. Both GAM and GLM catch rate standardizations were found to increase the 
consistency in year-to-year abundance trends among surveys. For example, Figure 3A shows 
plots of yearly catch rates from the NMFS survey vs. the NJ survey, and the MRFS survey vs. 
the NJ survey, over the range of years in which they overlapped (1988 to 2006). Pair-wise 
correlations between surveys were not strong when all years were included. However, when only 
high- or low-catch years were included (black circles in Fig. 3A) NJ data had a positive 
relationship with MRFSS data, and a negative relationship with NMFS data, and these 
relationships were much stronger with GAM-standardized catch rates than with geometric means 
of the catch rates. The results suggest that exceptionally strong or weak yearly catches occur in 
relation to environmental conditions, and are likely to be positively or negatively in phase among 
different areas along the coast, while mediocre yearly catches are haphazard. 

A working document with these analyses has been sent to SAS and ASFMC for use in the 
next stock assessment of weakfish.  
 
(3), We are working on juvenile index and abundance index long-term trend analyses through 
hierarchical models.  

We are developing models to elucidate the overall trend of weakfish population 
abundance over time.  Because each state has its own survey, with differences in survey methods 
and spatial locations, abundance trends from different states can be different, and none are by 
themselves representative of the entire weakfish population along the Atlantic coast.  We are 
using two methods to analyze the overall population trend through time.  The first method is to 
synthesize all survey data from all states in a single generalized linear or generalized additive 
model (as described above) and add the state as a fixed variable in the model.  The second 
method is to use a hierarchical model.  In this model, the overall Atlantic population is treated as 
a super-population, wherein each state is treated as a hierarchically structured subsample of the 
population.  The resulting structured trend of the super-population will then be representative of 
the whole population. Development of this analysis is currently in progress.   
 
(4), We are working on quantitative analysis of the spatial structure of individual fish growth, based 
on the biological survey data from different states. The purpose of this analysis is to obtain more 
accurate and more justifiable estimates of biological parameters that may need to be “borrowed” 
from one state to another; for example growth rates that are needed to forecast a state’s 
population trend, but have only been measured in a neighboring state. 

Initial work consisted of synthesizing the various age-length data sets from each state. 
Age-length frequency distributions have been calculated for each data set to evaluate which 
states may have the most comparable weakfish populations. Survey data, and especially fishery 
data, may include several gear types such as trawls, fish traps, pound nets and gillnets, seasons 
defined as ‘early’ or ‘late’, and span 3 or 4 years of data collection. Different gear types tend to 
catch different size distributions of fish, resulting in apparent growth function differences. One 
consistent trend that has been detected among age-length distributions of various states is a 
disjunction in the age-length relationship between weakfish >600-650 mm total length, and those 

                                                 
1 Some surveys comprised only categorical data, in which case calculating either a GLM or a GAM is identical. 
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<600-650 mm (Figure A4). A new graduate student is presently being recruited to analyze 
weakfish age-length distributions. Approaches to the analysis include bootstrapping lengths at 
age per dataset to measure variability of the growth functions, and using likelihood ratio tests to 
determine the significance of differences in growth, or sizes at age, among the different states. 
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Table A1: Moran’s Index results for spatial autocorrelation of SEAMAP annual survey trawl 
catches. 
 
Year catch numbers per trawl 
 Z score p distribution 

1990 4.72 < 0.01 clustered 
1991 0.49  random 
1992 -0.46  random 
1993 3.77 < 0.01 clustered 
1994 0.20  random 
1995 4.95 < 0.01 clustered 
1996 2.81 < 0.01 clustered 
1997 0.54  random 
1998 -0.03  random 
1999 -0.97  random 
2000 2.72 < 0.01 clustered 
2001 -0.64  random 
2002 -0.16  random 
2003 4.49 < 0.01 clustered 
2004 1.72 < 0.01 clustered 
2005 8.69 < 0.01 clustered 
2006 2.28 < 0.01 clustered 

 
 
 
 
 
 
 
Table A2. Comparison of AIC from GLM and GAM for surveys in which both models were 
used.  The lowest AIC by row (for positive catch or presence/absence) is highlighted in yellow. 
 

GAM GLM Surveys 

Positive catch Present/Absent Positive catch Present/Absent 

MRFSS 11628.0 10206.5 12433.3 11998.2 
NMFS 3793.7 1454.7 4114.3 1684.7 
SEAMAP 7580.2 5260.9 7695.5 5741.7 
NJ 4351.8 2683.6 4459.0 2895.0 

DE 30 ft. 5368.0 1358.4 5466.9 1429.9 
CT 2547.5 2028.3 2576.0 2171.8 

DE 16 ft. 14766.8 4216.0 14680.9 4343.2 
VIMS 27277.8 15451.7 27541.2 16781.5 
NC juv. 4764.1 * 4837.9 * 
NC gill. 1902.0 2414.4 1928.0 2524.7 

* Not used because no zero catches were recorded. 



 29 

Figure A1: The estimated population growth rate variation from a time-varying population 
growth model.  The hard line is the posterior mean of the population growth rate; the dotted lines 
the 95% credible interval of the population growth rate.   
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Figure A2: A comparison of CPUE yearly trend from the New Jersey trawl survey, based on four 
different methods. GLM: generalized linear model; GAM: generalized additive model. 
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Figure A3. Pairwise plots of NMFS vs. NJ and MRFSS vs. NJ yearly catch rate indices, with black 
shading indicating the salient (high or low) indices that are most likely to have significant 
correlations (shown as dotted lines). R2 values of correlations calculated for the salient indices are 
shown on each plot. 
 
 

0 20 40 60 80 100 120 140

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

NMFS

N
J

Geo

R2 = 0.35

0 200 400 600 800

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

NMFS

N
J

GAM

R2 = 0.83

 

0.04 0.06 0.08 0.10

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

MRFSS

N
J

Geo

R2 = 0.35

0.05 0.10 0.15 0.20

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

MRFSS

N
J

GAM

R2 = 0.87

 



 32 

Figure A4: Lengths-at-age denoted by gear type for three states: Maryland, Virginia, and North 
Carolina, and growth functions fitted separately to lengths >600-650 mm and <600-650 mm. 
Lengths-at-age of a fourth state, Rhode Island, show a more continuous growth function with 
only one gear type having been used. 
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